Brouwer , Luitzen Egbertus Jan


Brouwer , Luitzen Egbertus Jan
(1881–1966) Dutch mathematician and philosopher of mathematics
Born in Overschie in the Netherlands, Brouwer took his first degree and doctorate at the University of Amsterdam, where he became successively Privatdozent and professor in the mathematics department. From 1903 to 1909 he did important work in topology, presenting several fundamental results, including the fixed-point theorem. This is the principle that, given a circle (or sphere) and the points inside it, then any transformation of all points to other points in the circle (or sphere) must leave at least one point unchanged. A physical example is stirring a cup of coffee – there will always be at least one particle of liquid that returns to its original position no matter how well the coffee is stirred.
Brouwer's best-known achievement was the creation of the philosophy of mathematics known as intuitionism. The central ideas of intuitionism are a rejection of the concept of the completed infinite (and hence of the transfinite set theory of Georg Cantor) and an insistence that acceptable mathematical proofs be constructive. That is, they must not merely show that a certain mathematical entity (e.g. a number or a function) exists, but must actually be able to construct it. This view leads to the rejection of large amounts of widely accepted classical mathematics and one of the three fundamental laws of logic, the law of excluded middle (either p or not-p; a proposition is either true or not true).
Brouwer was able to re-prove many classical results in an intuitionistically acceptable way, including his own fixed-point theorem.

Scientists. . 2011.

Look at other dictionaries:

  • Brouwer, Luitzen Egbertus Jan — ▪ Dutch mathematician born February 27, 1881, Overschie, Netherlands died December 2, 1966, Blaricum       Dutch mathematician who founded mathematical intuitionism (a doctrine that views the nature of mathematics as mental constructions governed …   Universalium

  • Brouwer, Luitzen Egbertus Jan — ► (1881 1966) Matemático holandés. Fue uno de los fundadores de la moderna topología …   Enciclopedia Universal

  • Luitzen Egbertus Jan Brouwer — Pour les articles homonymes, voir Brouwer. Luitzen Egbertus Jan Brouwer (1881 1966) était un mathématicien néerlandais. Biographie Il est né le 27 février 1881 à Overschie (Rotterdam), et est mort le 2 décembre 1966 à Blaricum. Il soutient son… …   Wikipédia en Français

  • Luitzen Egbertus Jan Brouwer — Luitzen E. J. Brouwer (* 27. Februar 1881 in Overschie; † 2. Dezember 1966 in Blaricum) war ein niederländischer Mathematiker. Er schuf grundlegende topologische Methoden und Begriffe und bewies bedeutende topologische Sätze. Nach ihm ist der… …   Deutsch Wikipedia

  • Luitzen Egbertus Jan Brouwer — [ˈlœyt.sən ɛx.ˈbɛʁ.təs jɑn ˈbʁʌu.əʁ] (February 27 1881, Overschie – December 2 1966, Blaricum), usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathematician and philosopher, a graduate of the University of… …   Wikipedia

  • Luitzen Egbertus Jan Brouwer — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • BROUWER, Bertus (Luitzen Egbertus Jan) — (1881–1966)    Mathematician and philosopher. Brouwer is considered the founder of mathematical intuitionism, which led to the rejection of parts of classical mathematics. He studied mathematics and physics at the University of Amsterdam and… …   Historical Dictionary of the Netherlands

  • Luitzen Egbertus Jan Brouwer — Matemático holandés (1881 1966), graduado en la Universidad de Amsterdam. Sus trabajos ocuparon temas como Topología, Teoría de la Medida y Análisis Complejo. Formula el Teorema de Brouwer. Demostró la importancia de los espacios cartesianos y… …   Enciclopedia Universal

  • Brouwer — Luitzen Egbertus Jan …   Scientists

  • Brouwer's — Brouwer , Luitzen Egbertus Jan …   Scientists


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.